首页> 外文OA文献 >PKCε promotes cardiac mitochondrial and metabolic adaptation to chronic hypobaric hypoxia by GSK3β inhibition
【2h】

PKCε promotes cardiac mitochondrial and metabolic adaptation to chronic hypobaric hypoxia by GSK3β inhibition

机译:pKCε通过GsK3β抑制促进心肌线粒体和代谢适应慢性低压缺氧

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

PKCε is central to cardioprotection. Sub-proteome analysis demonstrated co-localization of activated cardiac PKCε (aPKCε) with metabolic, mitochondrial, and cardioprotective modulators like hypoxia-inducible factor 1α (HIF-1α). aPKCε relocates to the mitochondrion, inactivating glycogen synthase kinase 3β (GSK3β) to modulate glycogen metabolism, hypertrophy and HIF-1α. However, there is no established mechanistic link between PKCε, p-GSK3β and HIF1-α. Here we hypothesized that cardiac-restricted aPKCε improves mitochondrial response to hypobaric hypoxia by altered substrate fuel selection via a GSK3β/HIF-1α-dependent mechanism. aPKCε and wild-type (WT) mice were exposed to 14 days of hypobaric hypoxia (45kPa, 11% O2) and cardiac metabolism, functional parameters, p-GSK3β/HIF-1α expression, mitochondrial function and ultrastructure analyzed versus normoxic controls. Mitochondrial ADP-dependent respiration, ATP production and membrane potential were attenuated in hypoxic WT but maintained in hypoxic aPKCε mitochondria (P<0.005, n=8). Electron microscopy revealed a hypoxia-associated increase in mitochondrial number with ultrastructural disarray in WT versus aPKCε hearts. Concordantly, left ventricular work was diminished in hypoxic WT but not aPKCε mice (glucose only perfusions). However, addition of palmitate abrogated this (P<0.05 vs. WT). aPKCε hearts displayed increased glucose utilization at baseline and with hypoxia. In parallel, p-GSK3β and HIF1-α peptide levels were increased in hypoxic aPKCε hearts versus WT. Our study demonstrates that modest, sustained PKCε activation blunts cardiac pathophysiologic responses usually observed in response to chronic hypoxia. Moreover, we propose that preferential glucose utilization by PKCε hearts is orchestrated by a p-GSK3β/HIF-1α-mediated mechanism, playing a crucial role to sustain contractile function in response to chronic hypobaric hypoxia. © 2010 Wiley-Liss, Inc.
机译:PKCε对心脏保护至关重要。亚蛋白质组分析表明,活化的心脏PKCε(aPKCε)与代谢,线粒体和心脏保护调节剂(如缺氧诱导因子1α(HIF-1α))共同定位。 aPKCε迁移至线粒体,使糖原合酶激酶3β(GSK3β)失活,从而调节糖原代谢,肥大和HIF-1α。但是,PKCε,p-GSK3β和HIF1-α之间没有建立机制的联系。在这里我们假设心脏受限的aPKCε通过改变依赖于GSK3β/HIF-1α的底物燃料选择来改善线粒体对低压缺氧的反应。将aPKCε和野生型(WT)小鼠暴露于低氧缺氧(45kPa,11%O2)的14天中,并与正常氧对照相比对心脏代谢,功能参数,p-GSK3β/HIF-1α表达,线粒体功能和超微结构进行了分析。缺氧野生型中线粒体ADP依赖的呼吸,ATP产生和膜电位减弱,而缺氧aPKCε线粒体中则保持不变(P <0.005,n = 8)。电子显微镜检查显示,WT与aPKCε心脏相比,线粒体缺氧相关的超微结构紊乱增加。相应地,低氧野生型小鼠的左心室功减少,而aPKCε小鼠则没有(仅葡萄糖灌注)。然而,添加棕榈酸酯消除了该现象(相对于WT,P <0.05)。在基线和缺氧时,aPKCε心脏显示葡萄糖利用增加。平行地,与WT相比,低氧aPKCε心脏中的p-GSK3β和HIF1-α肽水平升高。我们的研究表明,适度,持续的PKCε激活会钝化通常在对慢性缺氧的反应中观察到的心脏病理生理反应。此外,我们提出PKCε心脏优先利用葡萄糖是由p-GSK3β/HIF-1α介导的机制精心策划的,在维持对慢性低压缺氧的收缩功能中起着至关重要的作用。 ©2010 Wiley-Liss,Inc.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号